Computational Intelligence in Wireless Sensor Networks - Seminar Reports|PPT|PDF|DOC|Presentation




Wireless sensor networks (WSNs) are networks of distributed autonomous devices that can sense or monitor physical or environmental conditions cooperatively. WSNs face many challenges, mainly caused by communication failures, storage and computational constraints and limited power supply. Paradigms of Computational Intelligence (CI) have been successfully used in recent years to address various challenges such as optimal deployment, data aggregation and fusion, energy aware routing, task scheduling, security, and localization.





CI provides adaptive mechanisms that exhibit intelligent behaviour in complex and dynamic environments like WSNs. CI brings about flexibility, autonomous behaviour, and robustness against topology changes, communication failures and scenario changes. However, WSN developers can make use of potential CI algorithms to overcome the challenges in Wireless Sensor Network. The seminar includes some of the WSN challenges and their solutions using CI paradigms.

A Wireless sensor network is a network of distributed autonomous devices that can sense or monitor physical or environmental conditions cooperatively. WSNs are used in numerous applications such as environmental monitoring, habitat monitoring, prediction and detection of natural calamities, medical monitoring and structural health monitoring. WSNs consist of a large number of small, inexpensive, disposable and autonomous sensor nodes that are generally deployed in an ad hoc manner in vast geographical areas for remote operations. Sensor nodes are severely constrained in terms of storage resources, computational capabilities, communication bandwidth and power supply.

Typically, sensor nodes are grouped in clusters, and each cluster has a node that acts as the cluster head. All nodes forward their sensor data to the cluster head, which in turn routes it to a specialized node called sink node (or base station) through a multi-hop wireless communication. However, very often the sensor network is rather small and consists of a single cluster with a single base station .Other scenarios such as multiple base stations or mobile nodes are also possible. Resource constraints and dynamic topology pose technical challenges in network discovery, network control and routing, collaborative information processing, querying, and tasking . CI combines elements of learning, adaptation, evolution and fuzzy logic to create intelligent machines. In addition to paradigms like neuro-computing, reinforcement learning, evolutionary computing and fuzzy computing, CI encompasses techniques that use swarm intelligence, artificial immune systems and hybrids of two or more of the above.

Paradigms of CI have found practical applications in areas such as product design, robotics, intelligent control, biometrics and sensor networks. Researchers have successfully used CI techniques to address many challenges in WSNs. However, various research communities are developing these applications concurrently, and a single overview thereofdoes not exist. Their aim is to bridge the gap between CI approaches and applications, which provide the WSN researchers with new ideas and incentives. A discussion on yet-unexplored challenges in WSNs, and a projection on potential CI applications in WSN are presented with an objective of encouraging researchers to use CI techniques in WSN applications.

0 comments: